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ABSTRACT

Development of an Origami Inspired Composite Deployable Structure Utilizing
Compliant Joints as Surrogate Folds

Samuel Porter Smith
Department of Mechanical Engineering, BYU
Master of Science

This work presents the design and construction of a self-deployable, self-stiffening, and
retractable (SDSR) space array from carbon fiber reinforced polymers (CFRP’s) and a working
prototype is demonstrated. The effort required developing principles for the design of high-strain
composite flexural joints and their integration into angled composite panels. Designing LET arrays
in angled panels is explored. Analysis of simple composite LET joints is presented for two degrees
of freedom. Validation of the composite LET modeling is sought through numerical methods and
empirical testing. Testing of several composite LET joint specimens is conducted and the results
are reported. Results indicate that (while not as compact as their isotropic material counterparts)
composite laminates can successfully use LET joints as surrogate folds.
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CHAPTER 1. INTRODUCTION

1.1 Motivation and Objective

In space missions, many methods and techniques are used to enable large deployable
structures—such as solar arrays, antennas, and radiators—for power, communication, and heat
regulation. With origami as inspiration, a new class of self-deployable, self-stiffening and re-
tractable (SDSR) arrays have emerged in aerospace research. SDSR arrays do not require the aid
of external support and actuation structures common in space applications, replacing them with
compliant joints and reeling cables. The exural joint used is an array of lamina emergent tor-
sional (LET) joints, an innovative solution to attain large de ections needed for hinge-like motion

in large foldable structures (a simple LET joint is shown in Figure 1.1).

Figure 1.1: LET joint with torsional segments in blue and bending segments in red

An aluminum SDSR has been successfully modeled and demonstrated as shown in Figure
1.2. However, while aluminum is lightweight, SDSR technology can be greatly improved with
more advanced, lighter weight materials. Carbon ber reinforced polymers (CFRP) show promise
for aerospace structures and this work attempts to understand the principles needed to successfully

create SDSR's from composite materials. In general, the objective of this thesis is to develop

1
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